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Abstract: Measurements of electrocardiogram (ECG) signals are widely used in medicine to provide heart diag-
nosis, because heart diseases are among most frequent causes of death in a modern world. However, measurement
noise often makes it difficult to extract features of ECG signals with a sufficient accuracy. Therefore, many in-
vestigations were focused on creating effective techniques for features extraction in ECG signals. In this paper,
we extract fiducial features of normal and abnormal T-waves of ECG signals using unbiased smoothing filtering
in state space. The results are compared to those obtained using the wavelet transform, morphological transform,
and threshold-based detection and show that the approach developed has a higher accuracy. It is also shown that
unbiased smoothing filtering allows providing an acceptable discrimination between normal and abnormal ECG
signals.
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1 Introduction

In the last decades, the electrocardiogram (ECG) sig-
nals have captivated the medical sector by an ability
of heart diseases detection. It is known that heart dis-
eases can be learned by tracing changes in the ECG
morphological characteristics, such as P-wave, QRS
complex and T-wave[1, 2, 3]. In particular, an abnor-
mal T-wave provides information about diseases such
as hyperkalemia, heart attack, hypothyroidism, peri-
cardia Chronic myocardial ischemia, and hypertrophy
[4, 5]. These diseases can be indicated by investigat-
ing the behaviour of T-wave shape [5]. However, if
the ECG data are excessively noisy and have artifacts,
such an analysis faces difficulties. Therefore, a big
attention has been paid during decades to ECG data
denoising using appropriate techniques.

There have been proposed a number of diverse
methods to denoise ECG data and extract useful fea-
tures. Some methods, such the Fourier transform-
based [6], view ECG signals as stationery and ignore
the time resolution. Algorithms based on the wavelets
transform provide better results respecting the trade
off between the frequency and time [7, 8, 9]. An ef-
fectiveness of these methods grows by an appropriate
chose of a wavelet function. Also, the Hilbert trans-
form and decomposition methods are used by some
authors to learn ECG signals and the machine learn-
ing facilities are exploited in [10, 11, 12].

It is known that smoothing is most efficient in sig-
nal denoising if some delay-lag is allowed. Because
the ECG data analysis is not a strictly real-time pro-
cess, smoothing can be applied. Specifically, one can
employ a polynomial smoother developed by Savitsky
and Golay [13] as it is used in many works. A flaw of
this smoother is that it relates theq-delay-lag to the
middle of the averaging horizon, which is optimal for
odd-order polynomials. For even-order polynomials,
the Savitsky-Golay smoother is thus not optimal. Al-
though the Savitsky-Golay smoother was optimized
in [14, 15] in the minimum mean square error (MSE)
sense, it still relies on the middle point of the averag-
ing horizon.

A more general approach is known as thep-shift
unbiased finite impulse response (UFIR) filtering de-
veloped by Shmaliyet. al. [16, 17, 18, 19, 20]. It
provides smoothing at any past point on the averaging
horizon with a lagq = −p > 0 [21, 22, 17]. There-
fore, an optimal lagq can be chosen individually for
each even-order of the approximating polynomial and
not obligatorily at the middle of the averaging hori-
zon, as for the odd-order.

In this paper, we provide denoising and features
extraction of ECG data using UFIR smoothing filter-
ing in the state space. In Section 2, a model of the
ECG signal is discussed in space state and the UFIR
smoothing filter is described. Here, we also describe
an iterative UFIR smoothing filtering algorithm and a
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propose methodology for fiducial features extraction
in T-waves. We base our analysis on the PTB and MIT
arrhythmia database available from [23, 24]. In Sec-
tion 3, validations and comparisons with other meth-
ods are provided. Finally, conclusions are drawn in
Section 4.

1.1 Fundamental Features of T-wave

The T wave, which is located in the ECG signal after
QRS-complex, represents ventricular depolarization.
The T wave is coupled with the relative refractory pe-
riod of ventricular depolarization, which is a period
where the cells of heart are vulnerable to the addi-
tional stimuli. Therefore, depending on the heart state,
the T-wave may demonstrate a regular or irregular be-
haviour as shown in Fig 1. Under normal conditions,
the T-wave is positive. But it can be negative in some
leads, such as LIII and precordial leads V1 and V2.
Even so, the T-wave can never be negative in LI and
LII [4]. It is also known that a peak-point of the T-
wave warns about hyperkalemia or myocardial injury,
while its inversion means myocardial ischemia.

Inverted T-wave

(b)

V5

MLII

MLII

V2

(a)

Normal T-wave

Figure 1:Normal and abnormal shapes of the T-wave.

2 UFIR Approach to T-wave Fea-
tures Extraction

An UFIR smoothing methodology to the T-wave fea-
tures extraction is reflected in Fig. (2). Initially, an

ECG data
Preprocessing

UFIR Smoothing
ECG Signals in

State-Space

Features
Extraction
in T-wave

� Segmetation
� Detrend
� Normalization

� Apply  Nopt (optimal
horizon) and Napt (adaptive
horizon).

� Provide estimate  K-states,
K=3.

� Calculate zero-cross
� Estimate of features:

T-peak, Ton and Toff.

Figure 2:A methodology of the T-wave features extraction
using UFIR smoothing.

ECG signal undergoes preprocessing, because it de-
pends of extra factors such as unpredictable move-
ments, shifts of electrodes, and faults of data acqui-
sition system. These and some other factor cause un-
desirable deviations in the ECG signal difficulties in
features extraction. It is thus recommended to provide
preprocessing and reduce the ECG signal trend to a
zero baseline. In some works, the relevant effect is
achieved using linear regression, although a majority
of used ECG records do not require a de-trend tech-
nique. Of importance also is to keep the same con-
ditions for ECG signals. With this aim, data normal-
ization is commonly provided. Later a signal segmen-
tation is provided as shown by Tompkins inet. al.
[25]. Provided the preprocessing and segmentation,
an UFIR smoother is applied as will be shown next.

2.1 ECG Signal Representation in State
Space

By approximating an ECG signal on a horizon of most
recentN points with a degree polynomial, the time-
invariant deterministic state and noisy measurement
equations can be written in discrete time indexn as

λn = Bλn−1 , (1)

ζn = Dλn + wn , (2)

whereλn ∈ R
K is the system state vector,ζn is the

scalar observation (measurement),Bn ∈ RK×K rep-
resents the system matrix projecting the initial state
λn−1 to λn,
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, (3)
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Dn ∈ R1×K is the observation matrix,

D = [ 1 0 · · · 0 ]T , (4)

andwn is the zero mean measurement noise with un-
known distribution and statistics. To denoise data and
extract ECG signal features, thep-shift UFIR filtering
approach can be applied as follows.

2.2 The Batch Unbiased FIR Filter

The batch UFIR filter operates on a horizon[m,n] of
N points, fromm = n − N + 1 to n. To optimize
the estimate in the mean square error (MSE) sense,
a optimal horizon lengthNopt is required. This con-
sideration is taken into account only in the slow areas
of the ECG signal. Fast ECG signal parts require a
minimum horizon, which therefore must be adaptive
to avoid large bias errors. Provided a filtering estimate
λ̂n , λ̂n|n of λn from the past ton, aq-lag smoothing
estimate can be calculated by projecting the estimate
to n− q as shown in [26].

In a batch form, the UFIR filtering estimate can
be written as

λ̂n = (HT
m,nH

T
m,n)

−1
H

T
m,nZm,n , (5)

whereZm,n is the observation vector andHm,n is the
measurement matrix, both augmented on a horizon
[m,n] as [26]

Zm,n = [ ζTm ζTm+1 . . . ζ
T
m ]T , (6)

Hm,n =






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





D(Bm+1)−1

D(Bm+2)−1

...
DB

−1

D















, (7)

whereB is a product system matrix specified with

Bg
r =











B
r−g+1 , g < r + 1 ,

I , g = r + 1 ,

0 , g > r + 1 .

(8)

For (6) and (7), the convolution-based batch
UFIR filter is given by

λ̂n = Hm,nZm,n , (9)

where the gain matrix

Hm,n = (HT
m,nH

T
m,n)

−1
H

T
m,n. (10)

can be rewritten as

Hm,n = GnH
T
m,n , (11)

via the generalized noise power gain (GNPG)Gn,
which is defined by

Gn = Hm,nHT
m,n = (Hm,nHm,n)

−1 . (12)

Provided the UFIR filtering estimatêλn, the q-
lag UFIR smoothing estimate can be obtained by a
projection of

λn−q|n = B
−qλn|n (13)

and we notice that again thatq = −p.

2.3 Iterative UFIR Smoothing of ECG Sig-
nals

The bach UFIR smoother can also be represented with
a computationally efficient iterative algorithm pro-
posed by Shmaliy [27, 26], which pseudo is listed as
Algorithm 1. Like the Kalman filter (KF), the iter-

Algorithm 1 Iterative UFIR Smoothing Algorithm for
ECG Signals
Data: ζn , N
Result: λ̂

1: Begin :
2: for n = N − 1, N, ... do
3: m = n−N + 1, s = n−N +K
4: Gs = (Hm,sHm,s)

−1

5: λ̃s= Gs(H
T
m,sZm,s)

6: for l = s+ 1 to n do
7: λ−

l =Bλl−1

8: Gl = [DT
D+ (BGl−1B

T )−1]−1

9: Kl = GlD
T

10: λ̃l = λ̃−
l + Kl(ζl −Dλ̃−

l )
11: end for
12: λ̂n=λ̂n

13: λ̂n−q=B−qλ̂n

14: end for

ative UFIR filter provides an estimate in two stages:
predictandupdate. Iteratively, an estimatêλn at time
index n is obtained using an auxiliary variablel be-
ginning withl = m+K and ending whenl = n. The
algorithm self-determines the initial statêλm+K−1

at m + K − 1 in a batch form on a short horizon
[m,m + K − 1], which is required to avoid singu-
larities. It then updates estimates iteratively to reach
the best value atn. The estimatêλn obtained in such a
way withNopt and adaptive horizonNapt minimizes
the MSE and is called the optimal UFIR estimate.

It is worth mentioning that the UFIR algorithm
does not require the noise statistics, which are gener-
ally unknown for the heartbeat noise. The the prior
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state estimate is predicted by

λ̂−
l
= Bλl−1 , (14)

the GNPG is updated with

Gl = [DT
D+ (BGl−1B

T )−1]−1 , (15)

the measurement residual is calculated as

zl = ζl −Dλ̂−
l , (16)

the bias correction gain is computed by

Kl = GlD
T , (17)

and the posteriori state estimate is provided by

λ̂l = λ̂−
l +Klzl . (18)

The iterative computation is repeated untill = n and
the final values are reflected in the output.

The best accuracy is achieved with Algorithm 1
if N = Nopt. To make it possible in the absence of
the heartbeat model, we follow [28] and findNopt for
ECG signals by minimizing the trace of the derivative
of the measurement residual covariance (MRC) ma-
trix V(N) as

N̂opt = argmin
N

∂ trV(N)

∂N
+ 1 . (19)

A solution to the optimization problem (19) has been
provided in [29] using an algorithm, which estimates
Nopt. It was also revealed in [29] for the explored
database thatNopt = 21 for the 2-degree polynomial
corresponding to three states,K = 3.

2.3.1 Testing the Iterative UFIR Smoothing Algo-
rithm by ECG Signals

It follows from the ECG signal morphology (Fig. 2)
that iterative UFIR smoothing must be organized to
have an adaptive averaging horizon. For the 3-state
polynomial ECG signal model, the system and mea-
surement matrices can be formed as, respectively,

B =





1 τ τ2

2
0 1 τ
0 0 1



 , D = [ 1 0 0 ] , (20)

whereτ = 1/f with f = 360Hz. Accordingly, the
augmented measurement matrix becomes

Hm,n =





DB
−2

DB
−1

D



 . (21)

Based on this model and Algorithm 1, the ECG
signal features can be extracted as shown below.
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Figure 3: An ECG signal and a T-wave: a) ECG signal
estimate (solid) and noisy measurement (dotted), b) T-wave
estimate (solid) and noisy measurement (dotted).

2.4 Features Extraction of T-wave

The T-wave features extraction starts with suppressing
the P-wave and QRS complex. This part of signal is
detected by analysing zero-cross points preceding the
T-wave. Detected the P-wave and QRS complex, a
new signal is extracted from the ECG signal estimate
to contain only the T-wave (Fig.3).

The iterative UFIR smoothing algorithm is next
applied to theK = 3 model, where the first state rep-
resents the T-wave (Dig. 4a), the second state the first
time derivative (Fig. 4b), and the third state the second
time derivative (Fig. 4c) of the T-wave.

Provided estimates of the T-wave states, features
extraction of the T-wave can further be organized as
in the following. PointsTon andToff are obtained
via the peak values,Tmax andTmin. Similarly, fea-
tures such as the amplitude and duration of the T-wave
are calculated: the duration is the difference between
Toff andTon and amplitude is the difference between
a value of the baseline (Toff or Ton) and a value of
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Figure 4: Estimates of the T-wave states provided by the
UFIR algorithm: a) first state (smoothed T-wave), b) sec-
ond state (first time derivative of the T-wave), and c) third
state (second time derivative of the T-wave).

the estimated T-peak̂T. This technique is applied to
normal and abnormal (inverted) T-waves (Fig. 5).
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Figure 5:Estimates of the T-peak: a) inverted T-wave, b)
third state of the inverted T-wave representing a maximum
peak, c) normal T-wave, and d) third state of the normal
T-wave representing a minimum peak.

Provided an algorithm for features extraction of
the T-wave, the performance of the approach will be
discussed next in a comparison with other available
methods.

3 Performance of the Proposed
Method

The proposed method is validated using the PTB and
MIT-arrhythmia database benchmarks, which are rec-
ognized as containing records with different diagnosis
and pathologies such as arrhythmias, myocardial in-
farction, heart failure, bundle branch block, myocar-
dial hypertrophy, valvular heart disease, myocarditis,
and healthy control. The acceptable tolerances for T-
wave are taken from [30].

3.1 A Comparison with Other Methods

DeterminedTon, theToff errors can be computed be-
tween the reference pulse and the estimates. The ref-
erence value is calculated by approximating an actual
one. Errors are averaged to determine the mean value
µ and the standard deviationσ.

Table 1 summarizes the results forµ andσ given
in milliseconds. In [30], the reference is determined
via measurements related to boundaries of the fidu-
cial points. We apply the UFIR-based algorithm and
other methods described in the literature; namely, the
threshold detector (TD) [31], wavelet detector (WD)
[32], and morphological transform (MMD) [33]. As
can be seen, the fiducial features estimated using the
UFIR-based algorithm and represented withToff have
the smallest standard deviation indicating that the fea-
tures are better clustered about the media.

Table 1: ECG Signal Features Extracted Using Differ-
ent Methods

Method ParameterTon Toff

TD µ(ms) 23.3 18.7

σ(ms 28.3 29.8

MMD µ(ms) 7.9 8.3

σ(ms 15.8 12.4

WD µ(ms) −4.8 −8.9

σ(ms 13.5 18.8

UFIR µ(ms) 40.8 10

σ(ms) 9.63 16.9

CSE(ref) σ(ms) − 30.6
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3.2 Detection of Abnormalities

Given the MIT-BIH arrhythmia database, we select
four records to analyse the amplitude concentration in
the T-wave. The first record has an inverted T-wave
(Fig 6, circled) that, according to the literature, may
be caused by an ischemic heart disease. The second
and the third records have normal behaviour. Finally,
the fourth record has irregular waves with possible in-
versions in the T-wave. Known the data conditions
shown in Fig. 6, a considerable discrimination can be
recognized between the abnormal and normal T-wave.

T
-w

a
v
e

A
m

p
lit

u
d

e

Discriminate Line

Records

Figure 6:Boxplot of different amplitudes T-waves for dif-
ferent record. A negative amplitude means an inverted T-
wave and positive a normal T-wave. The discriminator line
is located at zero. The first (circled), second, third, and
fourth records are records 100, 101, 103 and 112 in the
MIT-Arrhythmia database.

4 Conclusions

A powerful technique employing UFIR smoothing
and developed in this paper in state space has shown
an important discrimination between the normal and
abnormal T-wave shapes. We have designed a method
that provides estimation of three ECG signal states: a
smoothed signal (first state), its first time derivative
(second state), and its second time derivative (third
state). A considerable increase in accuracy is achieved
as compared to other known techniques of features ex-
traction such as the wavelet transform-based and using
a threshold detector. An important result is a detector
of the inverted and normal T-waves, which allows de-
termining a notable classification between healthy and
sick subjects. As a future work, we are going to extend
the algorithm developed to other ECG signal features
considering other records with different diseases.
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